Topological Signal Processing Over Simplicial Complexes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing Simplicial Complexes over Topological Spaces

The first step in topological data analysis is often the construction of a simplicial complex. This complex approximates the lost topology of a sampled point set. Current techniques often assume that the input is embedded in a metric – often Euclidean – space, and make significant use of the underlying geometry for efficient computation. Consequently, these techniques do not extend to non-Eucli...

متن کامل

On Topological Minors in Random Simplicial Complexes

Simplicial Complexes. A (finite abstract) simplicial complex is a finite set system that is closed under taking subsets, i.e., F ⊂ H ∈ X implies F ∈ X. The sets F ∈ X are called faces of X. The dimension of a face F is dim(F ) = |F | − 1. The dimension of X is the maximal dimension of any face. A k-dimensional simplicial complex will also be called a k-complex.

متن کامل

Topological approximation by small simplicial complexes

Given a point-cloud dataset sampled from an underlying geometric space X, it is often desirable to build a simplicial complex S approximating the geometric or topological structure of X. For example, recent techniques in automatic feature location depend on the ability to estimate topological invariants of X. These calculations can be prohibitively expensive if the number of cells in the approx...

متن کامل

New methods for constructing shellable simplicial complexes

A clutter $mathcal{C}$ with vertex set $[n]$ is an antichain of subsets of $[n]$, called circuits, covering all vertices. The clutter is $d$-uniform if all of its circuits have the same cardinality $d$. If $mathbb{K}$ is a field, then there is a one-to-one correspondence between clutters on $V$ and square-free monomial ideals in $mathbb{K}[x_1,ldots,x_n]$ as follows: To each clutter $mathcal{C}...

متن کامل

Complex Line Bundles over Simplicial Complexes and their Applications

Discrete vector bundles are important in Physics and recently found remarkable applications in Computer Graphics. This article approaches discrete bundles from the viewpoint of Discrete Differential Geometry, including a complete classification of discrete vector bundles over finite simplicial complexes. In particular, we obtain a discrete analogue of a theorem of André Weil on the classificati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2020

ISSN: 1053-587X,1941-0476

DOI: 10.1109/tsp.2020.2981920